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9:00-9:40 

 
Bernhard O. Palsson 

 
The construction of an integrated metabolic and 
transcriptional regulatory network 
 

9:40-10:00 Joseph Lehar Probing biological networks using chemical 
combinations 
 

10:20-10:40 Suzanne Komili Translational regulation defined by nuclear 
determinants and duplicated ribosomal proteins 
 

Coffee    
11:00-11:40 Fritz Roth  Network analysis of synthetic lethal genetic 

interactions 
 

11:40-12:20 Alain Nicolas SGA screens identify genetic network interaction 
among replication (rad27), double strand break 
repair (rad52) and nuclear pore (nup133) 
deficiencies in yeast 
 

 
Lunch  
& 
Posters 
 

 
 The Posters can be viewed in the room just 

outside the TMEC Amphitheatre 

14:00-14:40 Alejandro Colman-Lerner Regulated cell to cell variation in a cell fate 
decision system 
 

14:40-15:00 Matthew J. Bauer Homeostatic adjustment and metabolic re-
modeling in a glucose limited yeast culture 
 

15:00-15:20 Risto Renkonen  Dynamics in induced repression of 
phosphomannose isomerase PMI40 gene of 
S.cervisiae 
 

Coffee   
15:40-16:20 Edda Klipp  

&  
Lilia Alberghina 

Integrative analysis of the cell sizer network 
controlling entrance into S phase: role of the 
nucleo-cytoplasmic localization of Sic1 
 

16:20-16:40 Michael Samoilov Enhanced biomolecular network reconstruction 
via use of heterogeneous data 
 

16:40-17:00 Gunnar Cedersund  In vivo identification of yeast glycolysis 
 



 

Abstracts for talks 
 

The construction of an integrated metabolic and transcriptional 
regulatory network 
 
Bernhard Palsson  
 
Univeristy of California, S.Diego, USA 
 

Probing Biological Networks using Chemical Combinations 
 
J. Lehár1,2, G. Zimmermann1, A. Krueger2, L. Giusti1, B. Stockwell3, and C. Keith1 
 
1CombinatoRx, Inc. 2Boston University. 3Columbia University. 
 
Chemical combinations can provide rich constraints on biological systems1. Pairwise 
genetic deletions in yeast have already shown that combinations reveal functional 
associations between genes2, and chemical screens have been able to distinguish between 
yeast mutant strains3. Our screens for novel combination therapies4 produce response 
surfaces whose shapes differ markedly between mechanisms (Fig. 1). This information 
could be especially useful for systems biology because: (1) phenotypic responses to 
variable doses yield more detailed combination effects than those from basically digital 
genetic screens; (2) chemical probes target cellular components at the protein level, 
providing different and more immediate constraints on cellular function; and (3) chemical 
combination approaches can be applied to disease-relevant systems, like human 
signaling, that are less amenable to genetic deletions. We investigated the utility of 
chemical combinations through numerical simulations of metabolic pathways in 
conjunction with a small yeast screen of combined antifungal treatments targeting the 
sterol and other pathways. The simulations produced distinct response surface shapes for 
differing target configurations (Fig. 2), and the observed yeast proliferation responses are 
fully consistent with those predicted for the known topology and regulation of the sterol 
pathway in yeast. This work confirms that chemical combinations provide sensitive new 
constraints on the existence and nature of functional connections between targets, which 
can be used for systems biology and chemical genetics applications. 
 
 

 

 



 

 

Translational Regulation Defined by Nuclear Determinants and 
Duplicated Ribosomal Proteins 
 
Suzanne Komili1,2, Natalie Gilks1, Frederick P. Roth2 and Pamela A. Silver1 
 
1Department of Systems Biology, Harvard Medical School and The Dana-Farber CancerInstitute, Boston, 
Massachusetts 02115, USA, 2 Department of Biological Chemistry andMolecular Pharmacology, Harvard 
Medical School, Boston, Massachusetts 02115, USA 
 
Regulated translation is essential for establishing cellular polarity, which is required 
fordevelopment, cellular differentiation, and neuronal plasticity. S. cerevisiae is a 
modelsystem for the study of such processes since it regulates mating type in the 
daughter cell through polarized localization of certain mRNAs and their corresponding 
proteins. By studying a nuclear factor essential for proper mRNA localization in the 
cytoplasm, we demonstrate that several translationally regulated mRNAs need to be 
marked for translational repression prior to nuclear export, and that the regulated 
translation of these transcripts requires a specific subset of duplicated ribosomal protein 
genes. Genomic 
mRNA-immunoprecipitations further suggest that this mechanism extends to other 
transcripts, including those of cell-cycle regulatory factors. Our data yield a model in 
which certain transcripts are bound within the nucleus by a translation factor that 
subsequently recruits a non-canonical cytoplasmic ribosome composed of a distinct 
subset of duplicated ribosomal proteins. These non-canonical ribosomes enable regulated 
translation of target mRNAs and can affect both the spatial and temporal properties of 
their translation. Thus, we report the first functional explanation for the existence of 
multiple copies of ribosomal protein genes. Additionally, the mechanism we describe 
may generalize to higher eukaryotes and should have a significant impact on the 
modeling of gene expression. 
 

Network analysis of synthetic lethal genetic interactions  
 
Frederick "Fritz" Roth 
 
Assistant Professor; Frederick "Fritz" Roth. Harvard Medical School, Dept. of Biological Chemistry and 
Molecular Pharmacology, 250 Longwood Avenue, SGMB-322, Boston, MA 02115 
phone:(617) 432-3551   fax:  (617) 432-3557   
mailto:fritz_roth@hms.harvard.edu.  http://llama.med.harvard.edu 
 
Two genes have a synthetic lethal interaction if mutations in each gene separately are 
tolerable, but simultaneous mutation in both genes causes cell death. Such interactions 
provide robustness of an organism to mutation. We examined synthetic sick or lethal 
(SSL) genetic interactions from a systematic assay of over 700,000 gene pairs in S. 



cerevisiae. Here we describe:  a) a comparison of the value of SSL and protein 
interactions in predicting gene function; b) relationships to other biological networks, 
including network motifs; and c) the combination of SSL and microarray data to explore 
the role of transcriptional compensation in S. cerevisiae's robustness to gene loss. 

SGA screens identify genetic network interaction among 
replication (rad27), double-strand break repair (rad52) and 
nuclear pore (nup133) deficiencies in S. cerevisiae 
 
Sophie Loeillet *, Benoît Palancade#, Marina Cartron#, Agnès Thierry∫, Guy-Franck 
Richard∫, Bernard Dujon∫, Valérie Doye#x, and Alain Nicolas*x 

 

Institut Curie, Section de Recherche, UMR144 CNRS, Génétique Moléculaire de la Recombinaison, 26 rue 
d'Ulm, 75248 Paris Cedex 05, France; # Institut Curie, Section de Recherche, UMR144 CNRS, Pores 
Nucléaires et Transport Nucléocytoplasmique, 26 rue d'Ulm, 75248 Paris Cedex 05, France; ∫ Institut 
Pasteur, Unité de Génétique Moléculaire des Levures, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.  

 
Previous genetic interaction studies, including a synthetic genetic array (SGA) and 
synthetic lethality analysis on microarray (SLAM) analysis, showed that the survival of 
rad27Δ  cells in S. cerevisiae requires several DNA metabolic processes, in particular 
those mediated by all members of the Rad52-dependent recombinational repair pathway.  
We have independently performed a SGA screen of the rad27Δ cells against the 
collection of non-essential yeast genes with variant markers and protocols. It resulted in 
the identification of an overlapping but not identical set of rad 27Δ (Loeillet et al., 2005 
DNA Repair, 4, 459). Most notably, we detected a synthetic lethality affecting the Nup84 
nuclear pore subcomplex (nup133∆, nup120∆ and nup84∆) in conjunction with the 
rad27Δ mutation. Additional SGA screens showed all the Rad52 group genes are 
required for the survival of the nup133Δ and nup120Δ mutants, which are defective in 
nuclear pore distribution and mRNA export, but not of the nup Δ mutant, which is solely 
defective in pore distribution.  
These data and our own experience in conducting SGA screens will be presented. 
 

Regulated Cell to Cell Variation in a Cell Fate Decision System  
 
Alejandro Colman-Lerner, Andrew Gordon, Eduard Serra, Tina Chin, Orna Resnekov, 
Drew Endy**, C. Gustavo Pesce, and Roger Brent  
 
The Molecular Sciences Institute, 2168 Shattuck Avenue, Berkeley, California 94704, USA  
** Division of Biological Engineering, MIT,  31 Ames Street, Building, 68-580,   Cambridge, 
Massachusetts 02139  
 
We studied the quantitative behavior and cell-to-cell variability of a prototypical 
eukaryotic cell fate decision system, the mating pheromone response pathway in yeast. 
We dissected and measured sources of variation in system output analyzing thousands of 
individual, genetically identical cells. We found taht only a small portion of total cell-to-



cell variation was caused by random fluctuations in gene transcription and translation 
during the response ("expression noise"). Instead, variation was dominated by differences 
in the capacity of individual cells to transmit signals through the pathway ("pathway 
capacity") and to express genes into proteins ("expression capacity"). Cells with high 
expression capacity expressed genes at a higher rate and increased in volume more 
rapidly. In addition, our results revealed two mechanisms that regulated cell-to-cell 
variation in pathway capacity. First, the pathway MAP kinase Fus3 suppressed variation 
at high pheromone while the MAP kinase Kss1 enhanced variation at low doses. Second, 
pathway and expression capacity were negatively correlated, suggesting a compensatory 
mechanism that allowed cells to respond more precisely to pheromone in the presence of 
a large variation in expression capacity.  
 

Homeostatic adjustment and metabolic remodeling in glucose-
limited yeast cultures. 
 
Brauer MJ, Saldanha AJ, Dolinski K, Botstein D. 
 
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94122, USA. 
mbrauer@princeton.edu 
 
We studied the physiological response to glucose limitation in batch and steady-state 
(chemostat) cultures of Saccharomyces cerevisiae by following global patterns of gene 
expression. Glucose-limited batch cultures of yeast go through two sequential 
exponential growth phases, beginning with a largely fermentative phase, followed by an 
essentially completely aerobic use of residual glucose and evolved ethanol. Judging from 
the patterns of gene expression, the state of the cells growing at steady state in glucose-
limited chemostats corresponds most closely with the state of cells in batch cultures just 
before they undergo this "diauxic shift." Essentially the same pattern was found between 
chemostats having a fivefold difference in steady-state growth rate (the lower rate 
approximating that of the second phase respiratory growth rate in batch cultures). 
Although in both cases the cells in the chemostat consumed most of the glucose, in 
neither case did they seem to be metabolizing it primarily through respiration. Although 
there was some indication of a modest oxidative stress response, the chemostat cultures 
did not exhibit the massive environmental stress response associated with starvation that 
also is observed, at least in part, during the diauxic shift in batch cultures. We conclude 
that despite the theoretical possibility of a switch to fully aerobic metabolism of glucose 
in the chemostat under conditions of glucose scarcity, homeostatic mechanisms are able 
to carry out metabolic adjustment as if fermentation of the glucose is the preferred option 
until the glucose is entirely depleted. These results suggest that some aspect of actual 
starvation, possibly a component of the stress response, may be required for triggering 
the metabolic remodeling associated with the diauxic shift. 
 



Dynamics in induced repression of phosphomannose 
isomerasePMI40 gene of Saccharomyces cerevisiae 
 

Anssi Törmä1, 2, Juha-Pekka Pitkänen1, 2, Laura Huopaniemi2, Risto Renkonen2 
 
1MediCel Ltd, Haartmaninkatu 8, FIN-00290 Helsinki, Finland; 
2Rational Drug Design Program, Department of Bacteriology and Immunology, Haartman Institute and 
Biomedicum, P.O. Box 63, FIN-00014 University of Helsinki, Finland 
 
GDP-mannose is the precursor of cell wall biosynthesis in S. cerevisiae.To understand 
the system level role of GDP-mannose, we studied a conditional knock-out strain of the 
key enzyme in its synthesis; PMI40.. The experimental procedure allowed us to study the 
order of mechanisms the cells launch in order to adjust to a sudden malfunction in the 
metabolic machinery. We collected 100 samples from the continuous cultivations for 80 
hours and measured genome-wide gene expression levels, 10 enzyme activities, and 
concentrations of 30 intracellular metabolites. In order to carry out this magnitude of 
experimentations we needed to generate a bioLIMS to handle all the experimentations 
and generated data. Furthermore we built a sample-taking robot, which automatically 
took and preserved the samples. A proprieatary software platform, with e.g. workflow 
and pathway editors, was generated for the in silico part of the work. After normalization 
and clustering, significantly changed genes and metabolites were searched for enrichment 
in biological processes, molecular functions, and macromolecular complexes. Further, 
gene expression levels, metabolite concentrations, and enzyme activities were searched 
against each other for causality over time. Overall, we focused on thorough analysis of 
our own data and known database data in order to reward our efforts with knowledge.  
 
At the transcriptome level, repression of PMI40 activated various stress responses, such 
as osmotic stress, heat, oxidative stress, nutrient depletion, and DNA damage. 
Unexpectedly one third of the stress genes were induced even before the repression of 
PMI40 had affected the corresponding enzymatic activity or GDP-mannose 
concentration. Genes involved in response to osmotic stress were well represented in this 
set, suggesting a role for the Hog1p-MAPK cascade in the initial stress response. Phd1p 
and Skn7p were identified as high-ranking transcription factors possibly playing a role in 
the initial regulatory events. Over a longer time frame the repression of PMI40 led to 
starvation, as indicated by the induction of genes involved in filamentous growth and 
mating. 
 

Integrative analysis of the cell sizer network controlling entrance 
into S phase: role of the nucleo/cytoplasmic localization of Sic1 
 
Edda Klipp1, Matteo Barberis1,2,  Riccardo L. Rossi2, Vittoria Zinzalla2, Andrea 
Mastriani2, Marco Vanoni2 and Lilia Alberghina2 
 
1 Max Planck Institute for Molecular Genetics, Berlin, Germany 
2 Dept. of Biotecnology and Biosciences, University of Milano Bicocca, Milano, Italy 
 



The control of cell cycle is a very open question that may gain new strength via a 
modular systems biology approach (1). The coupling of cell growth to cell division is a 
universal but poorly understood feature of the cell cycle. In budding yeast a critical cell 
size (Ps) is required to enter S phase. Ps increases at faster growth rates. 
A two threshold mechanism involving the inhibitors of the cyclin dependent kinases Far1 
and Sic1 has been reported to control entrance into S phase in budding yeast (2). Further 
studies have shown that Sic1 localization into the nucleus requires an NLS and that Sic1 
facilitates nuclear accumulation of Clb5. Moreover the nucleo/cytoplasmic localization of 
Sic1 appears to be modulated by carbon source (3).  
Taking together all these results a mathematical model of the G1 to S transition has been 
constructed and analysed by simulation. The model is shown to accurately predict the 
behaviour of more than 40 mutants, and the differential dynamics of Sic1 and Clb5 in G1 
cells entering S phase in differential conditions. Algorithms for the simulation of cell 
population dynamics have been developed. The estimated values of Ps in different 
growth conditions support the notion that the critical cell size is an emergent property (4) 
of the described network and that its value is set by few relevant parameters. The 
perspectives of this line of investigation will be discussed. 
 
(1) Alberghina L. et al, “A molecular Systems Biology analysis of cell cycle in S phase” in Systems 
Biology: Definitions and Perspectives (L. Alberghina and H. Westerhoff, editors), Topics in Current 
Genetics, 2005, Springer Verlag. 
 
(2) Alberghina L. et al.,  “A cell sizer network involving Cln3 and  Far1 controls entrance into S phase in 
the mitotic cycle of budding yeast”, J. Cell. Biol. 2004, 167: 433-443. 
 
(3) Rossi, R.L. et al, “Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by 
the carbon source in budding yeast,” Cell Cycle, 2005 (in press). 
 
(4) Palsson B. O. et al, “Reconstruction of cellular signalling networks and analysis of their properties”, 
Nature Reviews Molecular Cell Biology, 2005, 6: 99-111. 
 
 

Enhanced Biomolecular Network Reconstruction via Use of 
Heterogeneous Data 
Michael Samoilov, Howard Hughes Medical Institute, UC Berkeley 

One of the central endeavors in Systems Biology is the reverse engineering of cellular 
networks, which is the first step towards rational prediction and control of the underlying 
organism behavior. While much empirical knowledge has been gained since the advent of 
the high-throughput experimental techniques, the task remains challenging due to, among 
other things, the inherently high structural and functional complexity of most biological 
molecular reaction pathways. Additionally, such network reconstruction efforts could be 
further impeded by the broadly heterogeneous nature of data sources, which may include 
microarray expression, ChIP-chip binding, yeast two-hybrid interaction and other types 
of observations, as the amount of information coming from any one source is still largely 
insufficient to enable the unambiguous inference of regulatory network structure directly. 
To address these challenges, many proposed reconstruction methods have relied on both 
highly abstracted and largely phenomenological or statistical models as a way of reducing 



complexity and increasing predictive power [1-8]. Recently, more biochemically-driven 
methods, which generally use the reaction modeling techniques of deterministic chemical 
kinetics to meaningfully constrain target biomolecular pathway properties, have begun to 
appear [9-12]. For example, one of these methods, NCA (by Liao et al. [12]), utilizes a 
kinetics-based formalism to deduce a bipartite network control matrix and regulator time-
courses from the expression time-series and a set of structural assumptions about the 
underlying gene regulatory network connectivity pattern. Our new unsupervised network 
reconstruction method, ENRICH (Enhanced Network Reconstruction via Inference of 
Connectivity/Control from Heterogeneous data), accrues the benefits of such approaches 
and is similar in spirit, if not in mathematical algorithm, to the NCA. ENRICH, however, 
does not impose constraints on the possible network connectivity patterns and is further 
able to simultaneously integrate the heterogeneous interaction and time-series data, thus 
increasing their combined predictive power. This allows ENRICH to, among other things, 
incorporate network structure hypotheses from other reconstruction methods – whether 
analytical or empirical – and to thus build upon their inferences by deducing additional 
significant interactions. 

We tested ENRICH on Saccharomyces cerevisiae cell-cycle microarray data (Spellman et 
al. [13]) in combination with interaction information in the form of 79 PCR-confirmed 
ChIP-chip transcription factor bindings (Lee et al. [14]). The algorithm inferred 383 new 
regulatory connections. For 5 regulators (Gal4, Gcn4, Msn4, Ste12 & Zap1), which had 
extensive independent gene-regulatory data available, we were able to find experimental 
evidence for over 54% of the 122 newly deduced regulatory controls, resulting in a 77% 
estimate for the percentage of all predicted regulatory interactions called correctly by 
ENRICH. In addition, one of the key uses for the algorithm is to, among other things, 
predict the interactions of central regulators that are difficult to manipulate genetically or 
otherwise because they essentially involve – directly or indirectly – many targets and 
because their concentrations must be tightly controlled or else toxicity arises. Rap1 is one 
such protein for which our method correctly infers many known regulatory interactions 
and predicts a number of new ones to be followed up. 

 

In Vivo Identification of Yeast Glycolysis 
 
Gunnar Cedersund  
 
Linköpings Universitet, Sweden 
 
Yeast glycolysis is one of the most well-characterized biological systems and it is also a 
system for which there exists a significant amount of data. Yeast glycolysis therefore 
serves as an excellent test case for many methods and promises within systems biology. 
In recent years quite a few large scale models of yeast glycolysis have been developed. 
An example of such a model is given by Hynne et al (Biophys. Chem., 2001, 94, 121-63), 
which also captures oscillations obtained in CSTR experiments. These models are 
typically based on in vitro estimates of the kinetic parameters followed by parameter 
adjustments to make the model as a whole reproduce the in vivo observations. However, 
the information contained in the available in vivo data is not sufficient to uniquely 



determine the kinetic parameters, i.e., the models are not identifiable. One can therefore 
not claim to have in vivo estimates of the kinetic parameters, or of the system features 
(like overall time-constants or control coefficients), in these models. We report two 
methods that allow for such in vivo estimations.  
 
The first method provides in vivo estimation of the kinetic parameters within a single 
reaction. It can be applied to reactions where direct measurements of all involved 
substrates, products, modifiers, and flux are available. This is experimentally possible, 
e.g., for the phosphoglucoisomerase reaction. We show that the parameter estimation 
problem is then often reduced to solving an overdetermined set of linear equations. 
Furthermore, we show how to robustly solve these equations in the presence of noise. 
 
The second method is suited for in vivo estimation of system features. It starts by 
applying model reduction techniques to a gray-box model to obtain an identifiable core 
model. The parameters of the core model are then uniquely estimated from the data and 
the features of the core model are translated back to the original gray-box model. The end 
result is a combination of the two models and we therefore denote this second approach 
core-box modeling. 
 
In the final part of the talk we use a newly developed method to reveal what generates 
temporal oscillations, e.g., in the Hynne et al model. We find that the oscillating core 
consists of the feedback from the ATP-consuming parts back to the ATP producing 
phosphofructokinase, which is also allosterically regulated by ATP. This result agrees 
well with recent conclusions drawn by another method from phase-relation data. This last 
analysis also serves as an example of what kind of analyzes can be done, once a reliable 
in vivo model is developed. 
 



Abstracts for posters  

 

Metabolome meets Transcriptome: Fast Dynamics Reveal 
Correlation between Metabolome and Transcriptome  
 
M.T.A.P. Kresnowati1, J.M. Daran2, W.A. van Winden1, J.T.Pronk2, J.J. Heijnen1 
 
1Bioprocess Technology Group, 2 Industrial Microbiology Group, Dept. of 
Biotechnology, Delft University of Technology, The Netherlands 
 
Biological system is such a complex system. Inside the cell, hundreds of molecules 
interact with each other and thousands of reactions occur simultaneously. To achieve a 
better understanding of what happens inside the cell a dynamic inter-‘omics’ analysis: 
transcriptome, proteome and metabolome is necessary. So far it is always assumed that 
cell regulation in the transcriptome and proteome level is much slower than metabolome 
level. Thus within the first few minutes following the pulse perturbation the enzyme 
concentration is assumed constant and the observed responses can be attributed to kinetic 
interactions at the metabolome level. However, the assumption is made without knowing 
the exact temporal expression program or the rate of protein synthesis since no 
quantitative transcriptome and proteome approach on such short time scale have ever 
been achieved. This study, for the first time, presents the combined metabolite and 
genome wide expression analysis of the fast dynamics S. cerevisiae response upon 
glucose pulse in a steady state glucose limited chemostat culture in the time frame of 360 
seconds.  
The study was performed in a Stimulus Response Technology experimental set up (Lange 
et al., 2001; Theobald et al., 1997), in which a glucose pulse was introduced into a steady 
state chemostat culture and subsequently samples were taken for intracellular metabolite 
(nucleotides, glycolytic and TCA cycle intermediates), extracellular metabolite (glucose, 
ethanol, acetate and glycerol) and transcript analysis (genome wide analysis by 
Affimetrix microarray). The results provide new insight in the chronological events 
between the metabolic and the transcriptional response and show a biological significant 
correlation between metabolome and transcriptome with respect to energy and 
nucleotides regulation. 
 
References: 
Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, de Mattos MJT, Heijnen JJ. 2001. 
Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces 
cerevisiae. Biotechnology and Bioengineering. 75(4):406-415. 
Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. 1997. In vivo analysis of metabolic dynamics in 
Saccharomyces cerevisiae : I. Experimental observations. Biotechnology and Bioengineering. 
55(2):305-316. 
 
 



Genome-wide Translational Control in Fission Yeast 
 
Daniel H. Lackner1 and Jürg Bähler1 
 
1 The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, U.K. 
tel: +44 (0)1223-494862; fax: +44 (0)1223-494919; email: dhl@sanger.ac.uk 
http://www.sanger.ac.uk/PostGenomics/S_pombe/ 
 
We are interested in global roles of translational regulation during the cell cycle and in 
response to environmental factors. To obtain translational profiles for all mRNAs, 
polysome preparations are separated according to their size using a sucrose gradient, and 
the mRNAs in each fraction (or pools of fractions) are identified and quantified with 
DNA microarrays (e.g. [1]).  
Starting with exponentially growing cells, we analyzed 13 polysome fractions using DNA 
microarrays containing elements for all known and predicted genes of fission yeast 
(Schizosaccharomyces pombe). This approach provided data on average numbers of 
associated ribosomes for most transcripts. A preliminary integration with data on mRNA 
steady-state levels revealed a strong bias: the most abundant transcripts seem to be 
associated with many more ribosomes than less abundant transcripts, although ribosome 
density seems to only correlate weakly with transcript levels. We are testing whether this 
trend depends on either transcription or mRNA decay rates. Translational profiling of 
cells in different cell-cycle stages or subjected to various perturbations will provide a 
genome-wide view of translational regulation in fission yeast, complementing our 
expression profiling data. Preliminary results of these studies will be presented. 
 
1. Arava, Y., et al., Genome-wide analysis of mRNA translation profiles in Saccharomyces 
cerevisiae. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3889-94. 
 

Space in Systems Biology of Signaling Pathways 
 
Kouichi Takahashi 
 
The Molecular Sciences Institute, Berkeley, USA. 
 
Extracellular signals captured by receptor proteins on the cell surface are transmitted 
inward to control gene expression. In vivo protein diffusion speed is significantly slower 
than in saline solutions, and is comparable to response timescales of signaling pathways 
[1], implying at least some of the biochemical reactions in the pathways are limited by 
diffusion. Diffusion-limited reaction can amplify effects of noise [2] and, when coupled 
with localized proteins, can also affect signaling outcomes [3]. Furthermore, extremely 
high protein concentrations (50-400 mg/ml) in the intracellular space, commonly called 
molecular crowding, can magnify the spatial effects [4].  
This presentation will discuss (1) simulation methods that can be used to investigate the 
spatial effects, (2) how those computational frameworks can represent intracellular 
molecular crowding either in implicit, semiexplicit or fully explicit way [5], and (3) 
feasible couplings of such computer modeling approaches with in vivo protein mobility 



measurement techniques such as fluorescence correlation spectroscopy. This study is part 
of the Molecular Sciences Institute’s Alpha project, which aims to enable precise and 
quantitative prediction of the mating pheromone response pathway of S. Cerevisiae. 
 
1. Elowitz, M., Surette, M., Wolf, P., Stock, J. and Leibler, S. (1999) Protein mobility in the cytoplasm of 
Escherichia coli. J. Bacteriol. 181(1):197-203. 
2. Andrews, S.S. and Bray, D. (2004) Stochastic simulation of chemical reactions with spatial resolution 
and single molecule detail. Phys. Biol. 1:137-151. 
3. Bhalla, U. (2004) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual 
pathways. Biophys. J. 87(2):733-744. 
4. Hall, D. and Minton, A. (2003) Macromolecular crowding: qualitative and semiquantitative successes, 
quantitative challenges. Biochim. Biophys. Acta 1649(2):127-139. 
5. Takahashi, K., Arjunan, S.N.V., Tomita, M. (2005) Space in systems biology of signaling pathways -- 
towards intracellular molecular crowding in silico. FEBS Lett. 579(8):1783-8. 
 
 

System biology approach in studies of SNF1 kinase complex 
functions in regulatory networks affecting cellular metabolism 
 
Renata Usaite, Jens Nielsen, Lisbeth Olsson 
 
Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Lyngby, 
Denmark 
 
Snf1 protein kinase and its regulatory subunit Snf4 from Saccharomyces cerevisiae have 
highly conserved mammalian AMP-activated protein kinase (AMPK) analogs. Lately 
AMPK have become one of the targets for specific drug creation against diabetes, obesity 
or other metabolic disorders. Therefore, the aims of this study were to elucidate the 
metabolic network affected by the SNF1 complex and to draw parallels with AMPK 
regulatory functions in mammalian cells. 
 
The S. cerevisiae Δsnf1, Δsnf4, and Δsnf1Δsnf4  strains were characterized in glucose and 
galactose batch fermentations. Results showed that after glucose depletion, galactose 
repression lasted 5, 13, 16 and 50 hours for the reference, Δsnf1, Δsnf4, and Δsnf1Δsnf4 
strains respectively. Moreover, specific growth rates on galactose were lower in glucose 
repression mutants. To analyze gene expression, yeast cells were pre-grown in glucose 
limited chemostats. Data showed that not only glucose repression but also other 
metabolic pathways such as glycogen, lipid and amino acid metabolism were strongly 
affected. A metabolic model integrated transcription data analysis indicated that SNF1 
complex affected cross-points between central carbon metabolism and pathways related 
to stress response, nitrogen metabolism and cell energy balance. The Δsnf1Δsnf4 strain 
had the most different transcriptional profile with abundant changes in amino acid 
metabolism.  
 
Data indicated that partial suppression of constitutive repression or leaky repression 
occurred in single deletion mutants, but a more complete repression took place in the 
double deletion mutant. Previously not described targets of SNF1 complex were pointed 



out using advanced transcriptome analysis tools. This might lead to elucidating more 
overlaps with mammalian AMPK functioning and new targets for treatment of various 
metabolic disorders. 
 

Identification of the network controlling the G1/S transition in 
yeast: a key role for subcellular localization of Sic1 
  
Lilia Alberghina, Riccardo Rossi, Vittoria Zinzalla, Matteo Barberis and Marco Vanoni 
 
Department of Biotechnology and Biosciences, University of Milano Bicocca Milano Italy,  
 
Systems biology aims to describe the structure of a biological system (i.e. its determinant 
molecular components and their wiring in a regulatory network) and to predict its 
dynamics under a spectrum of different conditions1, the goal being to achieve a 
comprehensive body of knowledge of biological systems, solidly grounded at the 
molecular level2. In the absence of a complete analytical knowledge of the components of 
a system, cellular processes can be conveniently considered as modules, subsystems of 
interacting molecules such as proteins, DNA, RNA and metabolites that perform a given 
function in a way largely independent from the context3. Modules are linked by 
governing interactions that follow general design principles that are well known in 
engineering, such as switch, threshold control, positive and negative feedbacks, 
amplification, error correction, etc. The components of a module and their interactions 
can be identified following iterative application of the  4M Strategy (quoted in ref. 4) - 
Mining  of literature  and data banks - Manipulation of the module structure and function 
- Measurement of all putative regulatory components - Modeling and simulation. 
We are applying this approach to the study of the G1/S transition of the budding yeast 
Saccharomyces cerevisiae5. The cyclin dependent kinase inhibitor Sic1 and the cyclin 
Clb5 are essential regulators of the cyclin dependent kinase Cdc28 during the G1 to S 
transition in budding yeast. We recently showed that Sic1 is involved in carbon source 
modulation of the critical cell size required to enter S phase6. Here we show that the 
amount and sub-cellular localization of Sic1 are carbon source-modulated. Nuclear 
localization of Sic1 depends upon a bipartite localization sequence and is essential for its 
role in vivo. Similarly to Cip/Kip proteins – Sic1 mammalian counterparts – Sic1 
facilitates nuclear accumulation of its cognate cyclin, as shown by cytoplasmic 
accumulation of Clb5 upon switching off expression of the SIC1 gene. These findings 
have been incorporated in the network controlling entrance into S phase that for the first 
time accounts for nucleo-cytoplasmic shuttling of Sic1 and Sic1 complexes. Matematical 
modelling and simulation of the network are reported in an accompanying report7. 
 
1. Kitano, H. (2002) Science, 295(5560): 1662-4. 
2. Westerhoff, H.V. and B.O. Palsson (2004) Nat Biotechnol, 22(10): 1249-52. 
3. Hartwell, L.H., et al. (1999) Nature, 402(6761 Suppl): C47-52. 
4. Henry CM (2003) Systems Biology. Chemical & Engineering News 81:45-55 
5. Alberghina, L., et al. (2005) in “Systems Biology” Top Curr Genet vol 13. Springer. 
6. Alberghina, L., et al. (2004) J Cell Biol, 167(3): 433-43. 
7. Klipp et al., (2005) this meeting. 
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In the context of designing cell factories, it is desirable to obtain quantitative data for a 
large number of state variables within the cell.  Metabolome analysis is an important, yet 
relatively unexploited tool for this purpose.  The use of high-throughput metabolome 
analysis in metabolic engineering has been limited by the lack of global approaches to 
quantitatively identify large families of intracellular and extracellular metabolites.  
Specifically, sample preparation is still considered to be a limiting step.  The diverse 
chemical and physical nature of metabolite structures gives rise to considerable 
experimental challenges in extracting diverse molecular families.  We have explored five 
different strategies for their ability to extract a significant number of metabolite families 
from the yeast Saccharomyces cerevisiae.    Mass spectrometry, which is increasingly 
occupying a central role in metabolome analysis, was used to characterize reproducibility 
for target analysis of pre-defined metabolites and metabolite profiling.  Specifically, gas 
chromatography coupled to mass spectrometry (GC-MS) and direct-infusion mass 
spectrometry were employed.  We will report a rapid, robust, and consistent method that 
can be applied to the identification of a large number of intracellular metabolites from 
this yeast.  In addition, we will comment on the use of this method in a more general 
framework for the integration of quantitative metabolome analysis with transcriptome 
studies for understanding design principles of the cell. 
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The eukaryotic cell cycle is the repeated sequence of events accompanying the division 
of a cell into daughter cells. It is divided into four phases: G

1
, S, G

2 
and M. Passage 

through the cell cycle is strictly regulated by the periodic synthesis and destruction of 
cyclins that bind and activate cyclin-dependent kinases (CDKs). The levels of cyclins rise 
and fall during the stages of the cell cycle. The levels of CDKs appear to remain constant 
during cell cycle, but individual molecules are either unbound or bound to cyclins. 
Cyclin-dependent kinase inhibitors (CKI) contribute to cell cycle control by coordinating 
internal and external signals and blocking proliferation at several key checkpoints.  
Budding yeast is a well studied model organism for modeling of cell cycle

1,2
. A major 

regulating event is the G
1 

to S transition, in which the cell has to reach a critical size in 



order to be able to enter into S phase. Work from one of our laboratories has allowed 
identifying the regulatory network controlling the entrance into S phase, which involves 
the CKI Far1 and Sic1

3
. Besides, more recent work

4 
has allowed dissecting the role of the 

nuclear/cytoplasmic localization in the regulation of the activity of Sic1, whose 
functional homology with the CKI p27

Kip1 
of mammalian cells has been described

5
.  

Taking together own results and data from the literature, we have constructed a model for 
the G

1 
to S transition. The graphical model has been implemented by a set of ordinary 

differential equations (ODEs)
6
. These equations describe the temporal change of the 

concentrations of the involved proteins and complexes. Moreover, the mathematical 
model accounts for the cell growth during the G

1 
phase as well as for the localization of 

components in different cell compartments (cytosol or nucleus).  
The model allows simulating the dynamics of the G

1 
to S transition in various growth 

conditions and in response to different signaling pathways. Sensitivity analysis is used to 
estimate the influence of parameter values on temporal behavior of key components and 
to show the relevance of the nuclear/cytoplasmic localization of Sic1

7
, modulated by 

carbon source, on the dynamics of the G
1 

to S transition, which has been neglected by 
earlier models of the cell cycle.  
 
1. Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B. & Tyson J.J. Integrative analysis of 
cell cycle control in budding yeast. Mol Biol Cell 15, 3841-3862 (2004).  
2. Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B. & Tyson, J.J. Kinetic analysis of a 
molecular model of the budding yeast cell cycle. Mol Biol Cell 11, 369-391 (2000).  
3. Alberghina, L., Rossi, R.L., Querin, L., Wanke, V. & Vanoni, M. A cell sizer network involving Cln3 
and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J Cell Biol 167, 433-443 
(2004).  
4. Rossi, R.L., Zinzalla, V., Vanoni, M. & Alberghina, L. Nuclear import of Sic1 is carbon source 
dependent. (2005). Submitted for publication.  
5. Barberis, M., De Gioia, L., Ruzzene, M., Sarno, S., Coccetti, P., Fantucci, P., Vanoni, M. & Alberghina, 
L. The yeast cyclin-dependent kinase inhibitor Sic1 and the mammalian p27(Kip1) are functional 
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Elucidating the structure and function of transcriptional regulatory networks has shed new insight into 
complex biological phenotypes, but is methodologically complicated by the complexity inherent in such 
networks. Towards these ends, we previously demonstrated a novel experimental and computational 



method for reverse-engineering a first-order model of regulatory interactions in the SOS network of 
Escherichia coli (2), and here apply a similar approach to a ten-gene network involved with glucose 
repression and longevity in Saccharomyces cerevisiae.  
S. cerevisiae strains were created which allowed for tetracycline-inducible overexpression (1) of each of 
the ten genes in the network studied, which included the glucose-repression regulator kinase SNF1, its 
associated protein complex subunits SNF4 and SIP2, downstream transcription factors CAT8, SIP4, 
MIG1, and MED8, and the glucose-repressed enzymes HXK2, FBP1, and SUC2 (3, 4). mRNA expression 
was assayed by quantitative RT-PCR in response to single-gene perturbations relative to control at a 
steady state, and the normalized expression ratios were used to construct a network model as a system of 
ordinary differential equations. We then employed an algorithm (NIR, or Network Inference by 
Regression) to learn the coefficients by multiple regression that minimized the least-squares error, 
providing a quantitative description of the sign (negative, positive, no interaction) and strength of 
regulatory influences of one network gene upon another.  
The recovered network model identified many of the known interactions between genes, as well as a large 
number of interactions previously uncharacterized. These novel predicted interactions were tested using 
gene deletions and promoter/reporter gene fusions to determine if the absence of the regulating gene in 
question affected expression of a lacZ reporter gene under control of the putative target gene's promoter. 
Chromatin Immunoprecipitation (ChIP) experiments were performed to examine whether newly predicted 
regulatory interactions occurred by direct transcription factor promoter binding. These results confirmed 
the majority of interactions predicted by the network inference strategy, indicating a previously 
uncharacterized high degree of connectivity and the prevalence of positive and negative feedback in 
transcriptional control of the Snf1 pathway.  
To further characterize the role of feedback suggested by this analysis, we modeled the dynamics of a 
two-gene subnetwork (SNF1, SIP2) by a system of delay differential equations. The model is based on 
mass-action kinetics, and accounts for regulation of gene expression, protein complex formation, 
modification and transport between the nucleus and cytoplasm (5). Specifically, Snf1 shuttles to the 
nucleus in low glucose, causing delayed upregulation of Sip2, a cytoplasmic protein. Sip2 forms a 
complex with Snf1, sequestering it to the cytoplasm and inhibiting further transport to the nucleus. In 
summary, SIP2 and SNF1 form a two-gene negative feedback loop, which exhibits interesting dynamics 
following transition from high to low glucose conditions.  
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PathwayLab is a software tool for modeling, simulation, and information management of 
biochemical reaction networks. The software facilitates the modeling process by an easy 
to use drag-and-drop graphical user interface where reaction networks quickly are 
assembled using ready made or user defined modeling objects. An important objective 



when designing the tool was to provide a framework that could support several exiting 
and future graphical formalisms for representing biochemical networks - easily 
customizable by the user. At the same time the objects used for assembling the graphical 
networks should constitute containers for mathematical equations and easily map to 
complete mathematical representations of the networks such as the reaction rate 
equations or code for applying the stochastic simulation algorithm. In PathwayLab we 
have succeeded in condensing the number of abstract model object classes to the basic 
objects: entities, transformations, controls, and locations. The current functionality of 
PathwayLab includes but is not limited to transient simulation, steady-state analysis, 
metabolic control analysis, export of models to Mathematica, Matlab, and SBML, 
parametric scans, time-course and phase plane plots, import of tabulated data to be 
interpolated during simulation, export of simulation data, and data base connectivity. All 
put together to make PathwayLab a valuable addition to the toolbox of the systems 
biology community. 
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Gene expression data are noisy, large scale and with groups of genes co-regulated. 
Clustering is widely used to group genes with similar pattern. Cluster centers can be used 
to infer the genetic networks among these groups of genes. Multi-scale fuzzy kmeans 
clustering algorithm can uncover groups of co-regulated genes with different degrees of 
co-regulation and capture the networks in different levels of detail. 
Time series expression profiles provide dynamic information for inferring gene 
regulatory relationships. Gene expression regulation can happen in specific time periods 
and conditions instead of over the whole expression profile. Identifying the transient 
interactions, feedback loops and telling direct interactions from indirect interactions are 
among major challenges of genetic network inference. This work uses short-time 
correlation to capture transient interactions and show how network structures 
dynamically change over time. Time correlation can also estimate the time delay and 
direction of causality in the inferred network. Partial correlation and d-separation theory 
can be combined to differentiate the direct and indirect interactions and identify feedback 
loops. 
This work integrates multi-scale clustering and short-time correlation to estimate 
regulatory networks at different time scales and degrees of coregulation. The algorithm 
was evaluated using yeast cell cycle data. The results give the networks at different levels 
of detail, and reflect most interactions previously identified by genome-wide location 
analysis[3]. Significant regulatory sequence motifs were identified based on the clusters at 
different levels and match literature results. The algorithm successfully identified the 
yeast cell cycle development stages, cell cycle loop and negative feedback loops, and 



indicated how networks dynamically change over time and in which time intervals the 
interactions happen. 
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BioRica is a framework that offers a unified view of various modeling approaches for 
biological systems (e.g. differential equations, Markov processes etc.). 
Living cells are complex systems consisting of distinct but interacting components. 
Adequately modeling this interacting organization is key to understanding their behavior, 
that is being able to analyze how these components interact in order to produce the 
observed emerging property.[1] 
It is now well accepted that the most precise units for modeling biological processes are 
the kinetic reactions occurring in, or between, the cell compartments. However, it is also 
recognized that some part of these processes can be described using higher order 
behavioral units without a significant loss of precision, while being easier to handle. 
Description, studying and verification of such models are now commonly made using 
computer simulation and formal mathematics by biologists. For this approach, two major 
model classes arose. On one hand, some biological phenomena can be captured within a 
discrete or state/transition paradigm, by exhibiting various causality chains between 
biological events and objects. Moreover, the use of probabilities and explicit timing 
behavior allows for great expressivity in these models, while sustaining natural 
intelligibility. On the other hand, from a computational point of view, the order of 
magnitude of the vast majority of processes leads us to consider another (and most widely 
used) paradigm in systems biology, that is Ordinary Differential Equations. This so called 
continuous paradigm is often used to fully describe the behavior of a particular cell 
function. Rather than considering these two paradigms as antagonistic, we aim at 
integrating them in a single modeling language with a unified semantics. Such an 
approach allows considering in one and the same model small and large scale 
interactions, timed and untimed behavior, precise or probabilistic descriptions, all the 
while taking into account the modularity observed in biological interactions.  
This goal is achieved through the S-AltaRica DataFlow language, a formal modeling 
language that describes a given system in terms of interacting components. The AltaRica 



language[2] allows textual and graphical description of such modular systems exhibiting 
discrete behavior by using timed cause and effect rules. Each rule can also have 
associated discrete and/or continuous probabilities, allowing for the description of a large 
set of behaviors within a single model. The semantics of an S-AltaRica DataFlow model 
is given in terms of stochastic mode automata.[3, 4] Furthermore, an automatic 
translation of ODE systems into AltaRica rules allows direct import of large scale 
systems, with a reasonably small overhead compared to pure numerical integration. Such 
a translation makes possible easy inclusion of existing SBML and Cellerator models into 
a AltaRica components. The description of the various components of a model uses an 
object oriented approach, permitting constructs such as synchronization and data sharing 
between components An efficient simulator BioRica toolkit provides a random 
simulation framework for S-AltaRica DataFlow models. The toolkit relies on the gcc 
compiler family to generate optimized automatic or interactive simulators, tailored to 
each model1 and based on a discrete event approach[5]. The simulation results are then 
processed by statistical analysis tools. We will illustrate the use of BioRica on small to 
middle-sized models. A demonstration of the tool will be available during the poster 
session. 
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We are developing computational methods for the identification of system level ‘functional 
signals’ which can be captured from metabolomics data and confirmed by other  
heterogeneous data sources. Objective: The objective of the current work is to develop 
computational approaches for the analysis of metabolic profiling data and physiological data, 
like growth profiles etc. combined with complimentary and confirmatory results from 
heterogeneous data sources like Transcriptomics data, to identify functional associations 
among genes. 
Results: Here we present, the results from a preliminary statistical study of a selected set of 
gene knockout mutants involved in the regulation of central carbon metabolism in S. 



cerevisiae, using the (i) Partition Around Medoids (PAM) and Hierarchical Clustering (HC) 
methods for finding the optimal number of gene clusters using physiological yield data 
(PHY) and (ii) Euclidean distance based on co-response profiles (CP), as a means of 
confirming the functional associations found using the PAM and HC methods. The knockout 
strains are exposed to different carbon sources namely Glucose, Fructose and Galactose, to 
identify the differential effects of knocked-out genes under different environment conditions. 
We found that 35% of gene pairs which showed CP correlation above 0.7, were also assigned 
to the same cluster or adjacent cluster based on PHY data. 
We identified YIL107C (PFK26) and YIL154C (IMP2) as one gene pair having functional 
association and by studying the literature we propose that IMP2 is involved in transcriptional 
regulation and requires PFK2 activity for the process. Further studies are needed for the 
confirmation of this ‘functional signal’. YIL107C (PFK26) and YOL136C (PFK27) are 
another pair of genes with a high co-response value and indeed, the genes are iso-enzymes 
catalyzing essentially the same reaction, though PFK26 shows a higher activity than PFK27. 
Systematic analysis of CP and PHY data was performed using R, as follows: (i) Calculation 
of pair-wise Euclidean distance for all ORFs based on PHY data, (ii) Generation of a 
symmetric matrix with gene pair CP correlation values. A Fischer test on these data gave p-
values below 0.05 for all three carbon sources, thereby confirming the hypothesis that those 
gene pairs which show close association in physiological yield also show high correlation in 
their transcript co-response profile. Further, we are working towards combining 
heterogeneous data sources like Mass Isotopomer Distribution(2) profiles and in-silico flux 
estimates for the development of a framework for protein function prediction exploiting 
metabolomics data. 
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The use of traditional tools for the discovery and characterization of biological systems 
has resulted in a wealth of biological knowledge. Unfortunately, only a small portion of 
the biological world is well-understood to date, and the study of the rest remains a 
daunting task. This work involves using time-varying stimuli in order to more rapidly 
interrogate and characterize signaling pathways. The time-dependent stimulation of a 
signaling pathway can be used in conjunction with a model of the pathway to efficiently 
evaluate and test hypotheses. We are developing this technology using the yeast 
pheromone signal transduction pathway as a model system. The time-varying stimuli will 
be applied to the yeast cells via a novel microfluidic device, and the pathway output will 
be measured via various fluorescent reporters. The output of the pathway can then be 
compared to the output from a computational model of the pathway in order to test 
hypotheses and constrain our knowledge of the pathway. Initial work shows that a 



computational model can be used to identify stimuli time-courses that increase the 
parameter sensitivity, meaning that corresponding experiments could potentially be much 
more informative. 
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Robustness is an emergent property of complex, evolvable systems such as the cell (1). 
Major experimental efforts have elucidated the molecular events of yeast cell 
proliferation in a resolution high enough to develop a kinetic in silico system (2). 
Sensitivity analysis using these models predict robust components, but how do the in 
silico predictions fair against in vivo results? And what can be elucidated by knowing it? 
In an attempt to answer these questions, we performed a genetic system-wide 
robustness/sensitivity analyses on the cell division cycle. Using 'Genetic tug-of-war' 
method, upper limit of gene dosage of 30 cell division cycle genes was determined. In 
conjunction we developed a comprehensive cell division molecular interaction map to 
visualise and model the results, which suggests B-type cyclin regulations are sensitive 
processes. Although the majority of experimental data were inconsistent with the in silico 
results, we propose possible improvements of the current model using these data to 
identify novel regulatory components and loops.   
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